
Proceedings of CUChE Alumni Symposium 2022
On “Circular Economy on Sustainable Basis: The Role of Chemical Engineers”
CUChEAA ISBN: 987-81-954649-1-3
December 2022 P a g e | 62 Volume 2, Issue 1
References
1. Maier, S. A.; Atwater, H. A., Plasmonics:
Localization and guiding of electromagnetic
energy in metal/dielectric structures. J. Appl.
Phys. 2005, 98 (1).
2. Al-Rawashdeh, N.; Foss, C. A., UV/Visible and
infrared spectra of polyethylene/ nanoscopic
gold rod composite films: effects of gold
particle size, shape, and orientation.
Nanostruct. Mater. 1997, 9 (1-8), 383-386.
3. Al-Rawashdeh, N. A. F.; Sandrock, M. L.;
Seugling, C. J.; Foss, C. A., Visible Region
Polarization Spectroscopic Studies of
Template-Synthesized Gold Nanoparticles
Oriented in Polyethylene. J. Phys. Chem.1998,
102 (2), 361-371.
4. Maier, S., Plasmonics - Towards
Subwavelength Optical Devices. Current
Nanoscience 2005, 1 (1), 17-22.
5. Zabet-Khosousi, A.; Dhirani, A. A., Charge
transport in nanoparticle assemblies. Chem Rev
2008, 108 (10), 4072-124.
6. Sardar, R.; Funston, A. M.; Mulvaney, P.;
Murray, R. W., Gold nanoparticles: past,
present, and future. Langmuir 2009, 25 (24),
13840-51.
7. Daniel, M. C.; Astruc, D., Gold nanoparticles:
assembly, supramolecular chemistry, quantum-
size-related properties, and applications toward
biology, catalysis, and nanotechnology. Chem
Rev 2004, 104 (1), 293-346.
8. Perezjuste, J.; Pastorizasantos, I.; Lizmarzan,
L.; Mulvaney, P., Gold nanorods: Synthesis,
characterization and applications. Coord. Chem.
Rev. 2005, 249 (17-18), 1870-1901.
9. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed,
M. A., Cancer cells assemble and align gold
nanorods conjugated to antibodies to produce
highly enhanced, sharp, and polarized surface
Raman spectra: a potential cancer diagnostic
marker. Nano Lett 2007, 7 (6), 1591-7.
10. Salem, A. K.; Searson, P. C.; Leong, K. W.,
Multifunctional nanorods for gene delivery. Nat
Mater 2003, 2 (10), 668-71.
11. Tkachenko, A. G.; Xie, H.; Coleman, D.;
Glomm, W.; Ryan, J.; Anderson, M. F.;
Franzen, S.; Feldheim, D. L., Multifunctional
gold nanoparticle-peptide complexes for
nuclear targeting. J Am Chem Soc 2003, 125
(16), 4700-1.
12. Dreaden, E. C.; Alkilany, A. M.; Huang, X.;
Murphy, C. J.; El-Sayed, M. A., The golden
age: gold nanoparticles for biomedicine. Chem
Soc Rev 2012, 41 (7), 2740-79.
13. Sankar, M.; Dimitratos, N.; Miedziak, P. J.;
Wells, P. P.; Kiely, C. J.; Hutchings, G. J.,
Designing bimetallic catalysts for a green and
sustainable future. Chem Soc Rev 2012, 41 (24),
8099-139.
14. Yu, W.; Porosoff, M. D.; Chen, J. G., Review
of Pt-based bimetallic catalysis: from model
surfaces to supported catalysts. Chem Rev 2012,
112 (11), 5780-817.
15. Sharma, G.; Kumar, D.; Kumar, A.; Al-
Muhtaseb, A. H.; Pathania, D.; Naushad, M.;
Mola, G. T., Revolution from monometallic to
trimetallic nanoparticle composites, various
synthesis methods and their applications: A
review. Mater Sci Eng C Mater Biol Appl 2017,
71, 1216-1230.
16. Agarwal, A.; Huang, S. W.; O’Donnell, M.;
Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S.,
Targeted gold nanorod contrast agent for
prostate cancer detection by photoacoustic
imaging. J. Appl. Phys. 2007, 102 (6).
17. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed,
M. A., Cancer cell imaging and photothermal
therapy in the near-infrared region by using
gold nanorods. J Am Chem Soc 2006, 128 (6),
2115-20.
18. Huang, W.; Qian, W.; El-Sayed, M. A.; Ding,
Y.; Wang, Z. L., Effect of the Lattice
Crystallinity on the Electron−Phonon
Relaxation Rates in Gold Nanoparticles. J.
Phys. Chem. C 2007, 111 (29), 10751-10757.
19. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-
Sayed, M. A., Gold nanoparticles: interesting
optical properties and recent applications in
cancer diagnostics and therapy. Nanomedicine
(Lond) 2007, 2 (5), 681-93.
20. Schultz, D. A., Plasmon resonant particles for
biological detection. Curr. Opin. Biotechnol.
2003, 14 (1), 13-22.
21. Schneider, C. M.; Cölfen, H., Formation of
Nanoclusters in Gold Nucleation. Crystals
2020, 10 (5).
22. Goswami, T.; Singh, M.; Reddy, K. M., Facile
synthesis and size-dependent visible light
photocatalytic properties of bio-compatible
silver nanoclusters. Mater. Res. Bull. 2018, 107,
286-294.
23. Cutrano, C. S.; Lekka, C. E., Structural,
magnetic and electronic properties of Cu-Fe
nanoclusters by density functional theory
calculations. J. Alloys Compd. 2017, 707, 114-
119.
24. Jin, R., Atomically precise metal nanoclusters:
stable sizes and optical properties. Nanoscale
2015, 7 (5), 1549-65.
25. LaMer, V. K.; Dinegar, R. H., Theory,
Production and Mechanism of Formation of
Monodispersed Hydrosols. J. Am. Chem. Soc.
2002, 72 (11), 4847-4854.
26. Ostwald, W., Über die vermeintliche Isomerie
des roten und gelben Quecksilberoxyds und die
Oberflächenspannung fester Körper. Zeitschrift