Proceedings of CUChE Alumni Symposium 2022
On “Circular Economy on Sustainable Basis: The Role of Chemical Engineers”
CUChEAA ISBN: 987-81-954649-1-3
December 2022 P a g e | 74 Volume 2, Issue 1
electrodes may be a plausible reason for better current and
energy efficiencies.
Acknowledgement
The experimental work as a part of Ph.D. dissertation of
the corresponding author was performed in the
Department of Chemical Engineering, University of
Calcutta, Kolkata, India. Technical support, Research
facilities and University Research Fellowship provided by
the University of Calcutta, Kolkata, India for carrying out
the work is gratefully acknowledged.
References
[1] Boggs B. K., Botte G. G., On-board hydrogen storage
and production: An application of ammonia electrolysis,
J. Power Sources (2009) 192:573–581.
[2] Vitse F., Cooper M., Botte G. G., On the use of
ammonia electrolysis for hydrogen production, J. Power
Sources (2005) 142:18–26.
[3] Boggs B. K., Botte G. G., Optimization of Pt–Ir on
carbon fiber paper for the electro-oxidation of ammonia
in alkaline media, Electrochim. Acta (2010) 55:5287–
5293.
[4] Daramola D. A., Singh D., Botte G. G., Dissociation
rates of urea in the presence of NiOOH catalyst: a DFT
analysis, J. Phys. Chem. A (2010) 114:11513–11521.
[5] Wang D., Yan W., Vijapur S. H., Botte G. G.,
Electrochemically reduced graphene oxide–nickel
nanocomposites for ureaelectrolysis, Electrochim. Acta
(2013) 89:732–736.
[6] Kim J., Choi W. J. K., Choi J., Hoffmann M. R., Park
H., Electrolysis of urea and urine for solar hydrogen,
Catal. Today (2013) 199:2–7.
[7] Rahimpour M. R., Mottaghi H. R., Simultaneous
removal of urea, ammonia, and carbon dioxide from
industrial wastewater using a thermal hydrolyzer-
separator loop, Ind. Eng. Chem. Res. (2009) 48:10037–
10046.
[8] Rahimpour M. R., Mottaghi H. R., Comparative study
of co-current and counter current Modes of operation for
a thermal hydrolyzer in an industrial urea wastewater
treatment loop, Ind. Eng. Chem. Res. (2010) 49:9289–
9299.
[9] Rahimpour M. R., Mottaghi H. R., Barmaki M. M.,
Enhancement of urea, ammonia and carbon dioxide
removal from industrial wastewater using a cascade of
hydrolyser-desorber loops, Chem. Eng. J. (2010)
160:594–606.
[10] King R. L., Botte G. G., Hydrogen production via
urea electrolysis using a gel electrolyte, J. Power Sources
(2011) 196:2773–2778.
[11] Marinčić L, Leitz F. B., Electro-oxidation of
ammonia in wastewater, J. Appl. Electrochem. (1978)
8:333–345.
[12] Bonnin E. P., Biddinger E. J., Botte G. G., Effect of
catalyst on electrolysis of ammonia effluents, J. Power
Sources (2008) 182:284–290.
[13] Palaniappan R., Improving The Efficiency Of
Ammonia Electrolysis For Hydrogen Production, Ph.D.
dissertation (2013), Russ College of Engineering and
Technology of Ohio University.
[14] Boggs B. K., King R. L., Botte G. G., Urea
electrolysis: direct hydrogen production from urine,
Chem. Comm. (2009) 32:4859–4861.
[15] cpcb.nic.in/GeneralStandards.pdf (accessed on
September 04, 2018).
[16] Zhou L., Cheng Y. F., Catalytic electrolysis of
ammonia on platinum in alkaline solution for hydrogen
generation, Int. J. Hydrogen Energ. (2008) 33:5897–
5904.
[17] Shau A., De P., Ray P., Improvement on efficiencies
of water electrolyzer using packed-bed electrodes, Int. J.
Hydrogen Energ. (2016) 41:10292−10298.
[18] Zeng K., Zhang D., Recent progress in alkaline water
electrolysis for hydrogen production and applications,
Prog. Energ. Combust. (2010) 36:307–326.